Evaluación de causas secundarias de baja masa ósea en mujeres colombianas con osteoporosis posmenopáusica

Tags:

Revista Colombiana de Endocrinología, Diabetes y Metabolismo

Evaluación de causas secundarias de baja masa ósea en mujeres colombianas con osteoporosis posmenopáusica

Edwin Antonio Wandurraga
Lisseth Fernanda Marín Carrillo
Annie Katherine Natera Melo
Claudia Milena Gómez Giraldo
Juan Camilo Mendoza Díaz
PDF HTML

Resumen

Introducción: La osteoporosis posmenopáusica puede coexistir con otras entidades que aumentan la pérdida ósea.
Objetivo: Determinar la frecuencia de causas secundarias de baja masa ósea en mujeres con osteoporosis posmenopáusica en una población colombiana.
Diseño: Estudio descriptivo retrospectivo.
Población: Mujeres mayores de 50 años con diagnóstico reciente de osteoporosis posmenopáusica antes de iniciar tratamiento.
Mediciones: Se incluyeron variables demográficas, densitométricas y bioquímicas como hemoglobina, fosfatasa alcalina, transaminasas, creatinina, 25-hidroxivitamina D, calcio, fósforo, magnesio, calciuria en 24 horas, PTH y TSH.
Resultados: Se incluyeron 129 mujeres con edad promedio de 67+/-8,8 años. Cuarenta y nueve mujeres (36%) presentaban antecedente de fractura por fragilidad. En el 86,8% se encontró al menos una alteración bioquímica asociada con pérdida de masa ósea, documentándose insuficiencia de vitamina D en 71,8%, hiperparatiroidismo normocalcémico en 18,1% e hipercalciuria en 6,4%. Las mujeres con antecedente de fractura presentaron valor promedio de fosfatasa alcalina superior (111,6 +/- 61,3 vs 87,1 +/- 30,4 U/L, p= 0,0143) y promedio de hemoglobina inferior (12,9 +/- 1,2 vs. 14,2 +/- 1,2gr/dl, p<0,0001) al compararse con las mujeres sin fractura. Se encontró correlación inversa entre los niveles de fosfatasa alcalina y la densidad mineral ósea de la columna lumbar (p<0,001) y la cadera (p=0,003).
Conclusiones: Las causas secundarias de baja masa ósea en mujeres con OPM son frecuentes en nuestro medio. Con base en una frecuencia de alteraciones mayor al 5%, sugerimos la evaluación de toda mujer con OPM con hemoglobina, calcio, calciuria en 24 horas, 25-hidroxivitamina D, AST, PTH y TSH.

Abstract
Introduction: Postmenopausal osteoporosis can coexist with other entities that increase bone loss.
Aim: To determine the frequency of secondary causes of low bone mass in women with postmenopausal osteoporosis in a Colombian population.
Materials and methods: A retrospective descriptive study was conducted, including women over 50 years with newly diagnosed postmenopausal osteoporosis without treatment. Demographic, densitometric and biochemical variables such as hemoglobin, alkaline phosphatase, transaminases, creatinine, 25 hydroxivitamin D, calcium, phosphorus, magnesium, calciuria in 24 hours, PTH and TSH were evaluated.
Results: 129 women with a mean age of 67 +/- 8,8 years were included. 49 patients (36%) had history of fragility fracture. At least one biochemical disorder associated with bone loss was reported in 86,8% of cases, vitamin D insufficiency was documented in 71,8%, normocalcemic hyperparathyroidism in 18,1% and hypercalciuria in 6,4%. Women with history of fracture showed higher average value of alkaline phosphatase (111,6 +/- 61,3 vs 87,1 +/- 30,4 U/L, p=0,0143) and lower mean hemoglobin (12,9 +/- 1,2 vs 14,2 +/- 1,2 gr/dl, p<0,0001) compared with women without fracture. Inverse correlation was found between levels of alkaline phosphatase and bone mineral density of lumbar spine (p<0,001) and hip (p=0,003).
Conclusions: Secondary causes of low bone mass in women with PMO are frequent in our clinical practice. Based on a frequency of laboratory abnormalities greater than 5%, we suggest that all women with PMO should be studied with hemoglobin, serum calcium, urinary calcium in 24 hours, 25 hydroxivitamin D, AST, PTH and TSH.
Keywords: ; ; etiology;; .

Referencias

1. Nochowitz B, Siegert S and Wasik M. An Update on Osteoporosis. Am J Ther. 2009 Sep-Oct;16(5):437-45.
2. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013 Jan;24(1):23-57.
3. Cosman F, de Beur SJ, Leboff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician´s Guide to prevention and treatment of Osteoporosis. Osteoporos Int. 2014 Oct;25(10):2359-81.
4. Armas LA, Recker RR. Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am. 2012 Sep;41(3):475-86.
5. Mirza F, Canalis E. Management of endocrine disease: secondary osteoporosis: pathophysiology and management. Eur J Endocrinol. 2015 Sep;173(3):R131-51.
6. Stein E, Shane E. Secondary osteoporosis. Endocrinol Metab Clin N Am 2003;32:115-134.
7. Kelman A, Lane NE. The management of secondary osteoporosis. Best Pract Res Clin Rheumatol 2005 Dec;19(6):1021-37.
8. Cerdá D, Peris P, Monegal A, Albaladejo C, Martínez MA, Muxí A, et al. Search for hidden secondary causes in postmenopausal women with osteoporosis. Menopause 2010 Jan-Feb;17(1):135-9.
9. Quesada-Gómez JM, Diaz-Curiel M, Sosa-Henriquez M, Malouf-Sierra J, Nogues-Solan X, Gomez-Alonso C, et al. Low calcium intake and inadequate vitamin D status in postmenopausal osteoporotic women. J Steroid Biochem Mol Biol. 2013 Jul;136:175-7.
10. Tannenbaum C, Clark J, Schwartzman K, Wallenstein S, Lapinski R, Meier D, et al. Yield of Laboratory Testing to Identify Secondary Contributors to Osteoporosis in Otherwise Healthy Women. J Clin Endocrinol Metab 2002 Oct;87(10):4431-7.
11. Molina JF, Molina J, Escobar JA, Betancur JF, Giraldo A. Niveles de 25 hidroxivitamina D y su correlación clínica con diferentes variables metabólicas y cardiovasculares en una población de mujeres posmenopáusicas Acta Med- Colomb vol. 36 no. 1 Bogotá Jan./Mar.2011.
12. Gonzalez D, Zuñiga C, K Kattah W. Insuficiencia de vitamina D en pacientes adultos con baja masa ósea y osteoporosis en la Fundación Santa Fe de Bogotá 2008-2009. Rev Col Reumatol 2010 17(4):212-218.
13. Correia A, Azevedo Mdo S, Gondim F, Bandeira F. Ethnic aspects of vitamin D deficiency. Arq Bras Endocrinol Metabol. 2014 Jul;58(5):540-4.
14. Njemini R, Meyers I, Demanet C, Smitz J, Sosso M, Mets T. The prevalence of antibodies in an elderly sub-Saharan African population. Clin Exp Immunol 2002 Jan;127(1):99-106.
15. Setiati S. Vitamin D status among Indonesian eldery women living in institutionalized care units. Acta Med Indones. 2008 Apr;40(2):78-83.
16. Durazo-Arvizu RA, Camacho P, Bovet P, Forrester T, Lambert EV, Plange- Rhule J, et al. 25-Hydroxyvitamin D in African-origin populations at varying latitudes challenges the construct of a physiologic norm. Am J Clin Nutr. 2014 Sep;100(3):908-14.
17. Van Schoor NM, Lips P. Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab 2011 Aug;25(4):671-80.
18. Arantes HP, Kulak CA, Fernandes CE, Zerbini C, Bandeira F, Barbosa IC, et al. Correlation between 25-hydroxyvitamin D levels and latitude in Brazilian postmenopausal women: from the Arzoxifene Generations Trial. Osteoporos Int. 2013 Oct;24(10):2707-12.
19. Escribano J, Balaguer A, Pagone F, Feliu A, Roqué I Figuls M. Pharmacological interventions for preventing complications in idiopathic hypercalciuria. Cochrane Database Syst Rev. 2009 Jan 21;(1):CD004754.
20. Ministerio de salud y protección social. Encuesta nacional de la situación nutricional en Colombia, 2005. Fecha de consulta: 30 de agosto de 2016. www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/ Ensin%202005.pdf.
21. Mukaiyama K, Kamimura M, Uchiyama S, Ikegamin S, Nakamura Y, Kato H. Elevation of serum alkaline phosphatase (ALP) level in postmenopausal women is caused by high bone turnover. Aging Clin Exp Res.2015 Aug;27(4):413-8.
22. Atalay S, Elci A, Kayadibi H, Onder CB, Aka N. Diagnostic utility of osteocalcin, undercarboxylated osteocalcin, and alkaline phosphatase for osteoporosis in premenopausal and postmenopausal women. Ann Lab Med. 2012 Jan;32(1):23-30.
23. Korkmaz U, Korkmaz N, Yazici S, Erkan M, Baki AE, Yazici, et al. Anemia as a risk factor for low bone mineral density in postmenopausal Turkish women. Eur J Intern Med. 2012 Mar;23(2):154-8. http://www.ncbi.nlm.nih.gov/ pubmed/22284246
24. Gurevitch O, Slavin S. The hematological etiology of osteoporosis. Med hypotheses. 2006;67(4):729-35.
25. Duh MS, Mody SH, Lefebvre P, Woodman RC, Buteau S, Piech CT. Anaemia and the risk of injurious falls in a community-dwelling elderly population. Drugs Aging 2008;25(4):325-34.
26. Penninx BW, Pluijm SM, Lips P, Woodman R, Miedema K, Guralnik JM, et al. Late- life anemia is associated with increased risk of recurrent falls. J Am Geriatr Soc. 2005 Dec;53(12):2106-11.

Palabras Clave

Osteoporosis posmenopáusica
fractura osteoporótica
etiología
densidad mineral ósea
deficiencia de vitamina D
hiperparatirodismo secundario
hipercalciuria
Postmenopausal osteoporosis
osteoporotic fracture
etiology
bone mineral density
vitamin D deficiency
secondary hyperparathyroidism
hypercalciuria

Para citar

Wandurraga, E. A., Marín Carrillo, L. F., Natera Melo, A. K., Gómez Giraldo, C. M., & Mendoza Díaz, J. C. (2017). Evaluación de causas secundarias de baja masa ósea en mujeres colombianas con osteoporosis posmenopáusica. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo3(4), 12–16. https://doi.org/10.53853/encr.3.4.5

Revista Colombiana de Endocrinología Diabetes y Metabolismo

 Volumen 3 número 4