Resumen
Las enfermedades cardiovasculares constituyen la primera causa de morbilidad y mortalidad en el mundo, tanto en los países desarrollados como en los que están en vías de desarrollo. La dislipidemia –asociada a la disfunción endotelial- y a los fenómenos inflamatorios vasculares, son los procesos iniciales en la patogénesis de la enfermedad arterial arterioesclerótica. Es evidente la asociación directa y lineal entre los niveles de colesterol de baja densidad y el riesgo de enfermedad arterial arterioesclerótica, al igual que el efecto benéfico de la intervención con fármacos que actúan en diferentes niveles (estatinas, ezetimibe, fibratos, anticuerpos monoclonales contra la PCSK9, entre otros).
Por su parte, la hipertrigliceridemia, y los niveles bajos de colesterol de alta densidad, al igual que otros parámetros como el colesterol no-HDL y otras lipoproteínas, también juegan un papel importante en la etiopatogenia de la enfermedad arterioesclerótica, y existe evidencia en favor de la modificación de dichos parámetros. Los nuevos fármacos han cambiado de forma sustancial los desenlaces cardiovasculares en individuos con alto riesgo cardiovascular, y en individuos con intolerancia a las estatinas. Las diferentes guías internacionales para el manejo de la dislipidemia comparten muchos aspectos respecto al manejo farmacológico y no farmacológico.
Sin embargo, existen algunas diferencias importantes entre ellas, incluso en la forma de abordar individuos con situaciones especiales de dislipidemia (embarazo, enfermedad renal crónica, entre otras).
Referencias
1. Bakhai S, Bhardwaj A, Sandhu P, et al. Optimisation of lipids for prevention of cardiovascular disease in a primary care. BMJ Open Qual. 2018;7(3):e000071.
2. Wilson PWF, Polonsky TS, Miedema MD, et al. Systematic Review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):3210-3227.
3. Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease: A Special Report From the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2019;73(24):3153-3167. DOI: 10.1016/j.jacc.2018.11.005.
4. Sandesara PB, Virani SS, Fazio S, et al. The Forgotten Lipids: Triglycerides, Remnant Cholesterol, and Atherosclerotic Cardiovascular Disease Risk. Endocr Rev. 2018;40(2):537-557. DOI: 10.1210/er.2018-00184.
5. Soran H, Adam S, Durrington PN. Optimising treatment of hyperlipidaemia: Quantitative evaluation of UK, USA and European guidelines taking account of both LDL cholesterol levels and cardiovascular disease risk. Atherosclerosis. 2018;278:135-142.
6. Cesena FHY, Laurinavicius AG, Valente VA, et al. Low-density lipoproteincholesterol lowering in individuals at intermediate cardiovascular risk: Percent reduction or target level? Clin Cardiol. 2018;41(3):333-338.
7. Karr S. Epidemiology and management of hyperlipidemia. Am J Manag Care. 2017;23(9 Suppl):S139-S148.
8. Mensah GA, Roth GA, Fuster V. The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J Am Coll Cardiol. 2019;74(20):2529-2532.
9. Gheorghe A, Griffiths U, Murphy A, et al. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health. 2018;18(1):975. DOI: 10.1186/ s12889-018-5806-x.
10. Joseph P, Leong D, McKee M, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res. 2017;121(6):677-694.
11. Schargrodsky H, Hernández-Hernández R, Champagne BM, et al. CARMELA: assessment of cardiovascular risk in seven Latin American cities. Am J Med. 2008;121(1):58-65.
12. Vinueza R, Boissonnet CP, Acevedo M, et al. Dyslipidemia in seven Latin American cities: CARMELA study. Prev Med. 2010;50(3):106-11.
13. Mora S. Nonfasting for Routine Lipid Testing: From Evidence to Action. JAMA Intern Med. 2016;176(7):1005-1006.
14. Rifai N, Young IS, Nordestgaard BG, et al. Nonfasting Sample for the Determination of Routine Lipid Profile: Is It an Idea Whose Time Has Come? Clin Chem. 2016;62(3):428-435.
15. Mora S, Rifai N, Buring JE, et al. Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation. 2008;118(10):993-1001.
16. Millar JS, Cuchel M. Cholesterol metabolism in humans: a review of methods and comparison of results. Curr Opin Lipidol. 2018;29(1):1-9.
17. de Boer JF, Kuipers F, Groen AK. Cholesterol Transport Revisited: A New Turbo Mechanism to Drive Cholesterol Excretion. Trends Endocrinol Metab. 2018;29(2):123-133.
18. Reeskamp LF, Meessen ECE, Groen AK. Transintestinal cholesterol excretion in humans. Curr Opin Lipidol. 2018;29(1):10-17.
19. Castro Cabezas M, Burggraaf B, Klop B. Dyslipidemias in clinical practice. Clin Chim Acta. 2018;487:117-125.
20. Mach F, Baigent C, Catapano AL, et al. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111- 188. DOI: 10.1093/eurheartj/ehz455
21. Graham IM, Catapano AL, Wong ND. Current guidelines on prevention with a focus on dyslipidemias. Cardiovasc Diagn Ther. 2017;7(Suppl 1):S4-S10.
22. Ramasamy I. Update on the laboratory investigation of dyslipidemias. Clin Chim Acta. 2018;479:103-125.
23. Jellinger PS, Handelsman Y, Rosenblit PD, et al. American Association Of Clinical Endocrinologists And American College Of Endocrinology Guidelines For Management Of Dyslipidemia And Prevention Of Cardiovascular Disease. Endocr Pract. 2017;23(Suppl 2):1-87.
24. Cooney MT, Dudina AL, Graham IM. Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol. 2009;54:1209-1227.
25. Ministerio de Salud y Protección Social – Colciencias. Guía de práctica clínica para la prevención, detección temprana, diagnóstico, tratamiento y seguimiento de las dislipidemias en la población mayor de 18 años. 2014 - Guía No. 27. Bogotá: Ministerio de Salud y Protección Social; 2014.
26. Muñoz OM, García AA, Fernández D, et al. Guía de práctica clínica para la prevención, detección temprana, diagnóstico, tratamiento y seguimiento de las dislipidemias en la población mayor de 18 años. Acta Med Colomb. 2014;39(Supl 2):5-27.
27. Muñoz OM, Rodríguez NI, Ruíz-Morales A, et al. Validación de los modelos de predicción de Framingham y PROCAM como estimadores del riesgo cardiovascular en una población colombiana. Rev Colomb Cardiol. 2014;21(4):202-212.
28. Jellinger PS. American Association of Clinical Endocrinologists/American College of Endocrinology Management of Dyslipidemia and Prevention of Cardiovascular Disease Clinical Practice Guidelines. Diabetes Spectr. 2018;31(3):234-245.
29. Cavallari I, Delli Veneri A, Maddaloni E, et al. Comparison of Lipid-Lowering Medications and Risk for Cardiovascular Disease in Diabetes. Curr Diab Rep. 2018;18(12):138. DOI: 10.1007/s11892-018-1117-y.
30. Warraich HJ, Rana JS. Diabetic Dyslipidemia: Epidemiology and Prevention of Cardiovascular Disease and Implications of Newer Therapies. Curr Cardiol Rep. 2018;20(12):125. DOI: 10.1007/s11886-018-1068-6.
31. Kocyigit D, Gurses KM, Tokgozoglu L. Anti-inflammatory therapy in atherosclerosis. Front Biosci (Landmark Ed). 2020;25:242-269.
32. Mendis S, Chestnov O. The global burden of cardiovascular diseases: a challenge to improve. Curr Cardiol Rep. 2014;16(5):486.
33. Ranganathan P, Pramesh CS, Aggarwal R. Common pitfalls in statistical analysis: Absolute risk reduction, relative risk reduction, and number needed to treat. Perspect Clin Res. 2016;7(1):51-53.
34. Gigerenzer G, Wegwarth O, Feufel M. Misleading communication of risk. BMJ. 2010;341:c4830.
35. Pletcher MJ, Moran AE. Cardiovascular Risk Assessment. Med Clin North Am. 2017;101(4):673-688.
36. Ferrari R, Aguiar C, Alegria E, et al. Current practice in identifying and treating cardiovascular risk, with a focus on residual risk associated with atherogenic dyslipidaemia. Eur Heart J Suppl. 2016;18(Suppl C):C2-C12.
37. Humphries KH, Mancini GBJ. Reduction of LDL-C-related residual cardiovascular risk with ezetimibe: are mechanistic considerations warranted in practice? Eur Heart J. 2017;38(29):2276-2278. DOI: 10.1093/eurheartj/ehx275.
38. Krähenbühl S, Pavik-Mezzour I, von Eckardstein A. Unmet Needs in LDL-C Lowering: When Statins Won’t Do! Drugs. 2016;76(12):1175-1190.
39. Grupo de trabajo de Dislipemia Aterogénica de la Sociedad Española de Arteriosclerosis y Grupo Europeo de Expertos Practical recommendations for the management of cardiovascular risk associated with atherogenic dyslipidemia, with special attention to residual risk. Spanish adaptation of a European Consensus of Experts. Clin Investig Arterioscler. 2017;29(4):168-177.
40. Pérez A. Tratamiento estatino-céntrico de la dislipemia. ¿Nuevo paradigma basado en la evidencia o solo parte de la evidencia? Endocrinol Nutr. 2016;63:1-3.
41. Bello-Chavolla OY, Kuri-García A, Ríos-Ríos M, et al. Familial combined hyperlipidemia: current knowledge, perspectives, and controversies. Rev Invest Clin. 2018;70(5):224-236.
42. Zitouni K, Steyn M, Earle KA. Residual renal and cardiovascular disease risk in conventionally-treated patients with type 2 diabetes: the potential of non-traditional biomarkers. Minerva Med. 2018;109(2):103-115.
43. Hernández-Mijares A, Ascaso JF, Blasco M, et al. Residual cardiovascular risk of lipid origin. Components and pathophysiological aspects. Clin Investig Arterioscler. 2019;31(2):75-88. DO: 10.1016/j.arteri.2018.06.007.
44. Shapiro MD, Fazio S. Biologic bases of residual risk of cardiovascular events: A flawed concept. Eur J Prev Cardiol. 2018;25(17):1831-1835.
45. Cziraky MJ, Watson KE, Talbert RL. Targeting low HDL-cholesterol to decrease residual cardiovascular risk in the managed care setting. J Manag Care Pharm. 2008;14(8 Suppl):S3-28.
46. Mata P, Alonso R, Pérez de Isla L. Atherosclerotic cardiovascular disease risk assessment in familial hypercholesterolemia: does one size fit all? Curr Opin Lipidol. 2018;29(6):445-452.
47. Toth PP, Granowitz C, Hull M, et al. High Triglycerides Are Associated With Increased Cardiovascular Events, Medical Costs, and Resource Use: A RealWorld Administrative Claims Analysis of Statin-Treated Patients With High Residual Cardiovascular Risk. J Am Heart Assoc. 2018;7(15):e008740. DOI: 10.1161/JAHA.118.008740.
48. Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67-e492.
49. Han JS, Kim K, Jung Y, et al. Metabolic Alterations Associated with Atorvastatin/Fenofibric Acid Combination in Patients with Atherogenic Dyslipidaemia: A Randomized Trial for Comparison with Escalated-Dose Atorvastatin. Sci Rep. 2018;8(1):14642. DOI: 10.1038/s41598-018-33058-x.
50. Varbo A, Benn M, Tybjaerg-Hansen A, et al. Elevated remnant cholesterol causes both low?grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation. 2013;128(12):1298-1309.
51. Varbo A, Benn M, Tybjaerg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61(4):427-436.
52. Schwartz GG, Abt M, Bao W, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65(21):2267-2275.
53. Nichols GA, Philip S, Reynolds K, et al. Increased residual cardiovascular risk in patients with diabetes and high versus normal triglycerides despite statin-controlled LDL cholesterol. Diabetes Obes Metab. 2019;21(2):366- 371. DOI: 10.1111/dom.13537.
54. Vincent J. Lipid Lowering Therapy for Atherosclerotic Cardiovascular Disease: It Is Not So Simple. Clin Pharmacol Ther. 2018;104(2):220-224.
55. Tarantino N, Santoro F, Correale M, et al. Fenofibrate and Dyslipidemia: Still a Place in Therapy? Drugs. 2018;78(13):1289-1296.
56. Hallén J, Sreeharan N. Development of triglyceride-lowering drugs to address residual cardiovascular risk: strategic and clinical considerations. Eur Heart J Cardiovasc Pharmacother. 2018;4(4):237-242.
57. Alkhalil M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, reality or dream in managing patients with cardiovascular disease. Curr Drug Metab. 2019;20(1):72-82. DOI: 10.2174/1389200219666180 816141827.
58. Evans MC, Stalam T, Miller M. Cardiovascular Risk Assessment in Patients with Hypertriglyceridemia. Curr Cardiol Rep. 2018;20(9):71. DOI: 10.1007/s11886-018-1013-8.
59. Enkhmaa B, Prakash N, Berglund L. Non-HDL-C levels and residual cardiovascular risk: Do population-specific precision approaches offer any advantages? Atherosclerosis. 2018;274:230-231.
60. Patel KV, Pandey A, de Lemos JA. Conceptual Framework for Addressing Residual Atherosclerotic Cardiovascular Disease Risk in the Era of Precision Medicine. Circulation. 2018;137(24):2551-2553.
61. Toth PP, Jones SR, Slee A, et al. Relationship between lipoprotein subfraction cholesterol and residual risk for cardiovascular outcomes: A post hoc analysis of the AIM-HIGH trial. J Clin Lipidol. 2018;12(3):741-747.
62. Hadjiphilippou S, Ray KK. Lipids and Lipoproteins in Risk Prediction. Cardiol Clin. 2018;36(2):213-220.
63. Adams V, Linke A. Impact of exercise training on cardiovascular disease and risk. Biochim Biophys Acta Mol Basis Dis. 2019;1865(4):728-734.
64. Dalen JE, Devries S. Diets to prevent coronary heart disease 1957-2013: what have we learned? Am J Med. 2014;127(5):364-369.
65. Dussaillant C, Echeverría G, Rozowski J, et al. Egg intake and cardiovascular disease: a scientific literature review. Nutr Hosp. 2017;34(3):710-718.
66. Ramsden CE, Zamora D, Majchrzak-Hong S, et al. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968-73). BMJ. 2016;353:i1246. DOI: 10.1136/ bmj.i1246.
67. Calder PC. Lipids: A hole in the diet-heart hypothesis? Nat Rev Cardiol. 2016;13(7):385-386.
68. DiNicolantonio JJ, O’Keefe JH. Omega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis. Open Heart. 2018;5(2):e000898. DOI: 10.1136/openhrt-2018-000898.
69. Zhong VW, Van Horn L, Cornelis MC, et al. Associations of Dietary Cholesterol or Egg Consumption With Incident Cardiovascular Disease and Mortality. JAMA. 2019;321(11):1081-1095.
70. Malakou E, Linardakis M, Armstrong MEG, et al. The Combined Effect of Promoting the Mediterranean Diet and Physical Activity on Metabolic Risk Factors in Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients. 2018;10(11). pii: E1577. DOI: 10.3390/ nu10111577.
71. Patnode CD, Evans CV, Senger CA, et al. Behavioral Counseling to Promote a Healthful Diet and Physical Activity for Cardiovascular Disease Prevention in Adults Without Known Cardiovascular Disease Risk Factors: Updated Systematic Review for the U.S. Preventive Services Task Force [Internet]. JAMA. 2017;318(2):175-193.
72. Perez-Martinez P, Katsiki N, Mikhailidis DP. The Role of n-3 Fatty Acids in Cardiovascular Disease: Back to the Future. Angiology. 2020;71(1):10-16.
73. Chiavaroli L, Nishi SK, Khan TA. Portfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-analysis of Controlled Trials. Prog Cardiovasc Dis. 2018;61(1):43-53.
74. García A, Muñoz O, Fernández D. Alternativas terapéuticas al manejo farmacológico con estatinas en adultos con dislipidemia. Revisión sistemática de la literatura y recomendaciones generales. Rev Colomb Cardiol. 2015;22(4):179-186.
75. Wang DD, Hu FB. Dietary Fat and Risk of Cardiovascular Disease: Recent Controversies and Advances. Annu Rev Nutr. 2017;37:423-446.
76. Clifton PM. Diet, exercise and weight loss and dyslipidaemia. Pathology. 2019;51(2):222-226.
77. Boden WE, Probstfield JL, Anderson T, et al. AIM-HIGH Investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. New Engl J Med. 2011;365(24):2255-2267.
78. Landray MJ, Haynes R, Hopewell JC. HPS2-THRIVE Collaborative Group. Effects of extended release niacin with laropiprant in high-risk patients. New Engl J Med. 2014;371(3):203-12.
79. Jun M, Foote C, Lv J, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta.analysis. Lancet. 2010;375(9729):1875-84.
80. Bhatt DL, Steg PG, Miller M, et al. REDUCE-IT Investigators. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 2019;380(1):11-22.
81. Abdelhamid AS1, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD003177.
82. Cannon CP, Blazing MA, Giuglino RP, et al. IMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary síndromes. New Engl J Med. 2015;372(25):2387-97.
83. Adhyaru BB, Jacobson TA. Role of Non-Statins, LDL-C Thresholds, and Special Population Considerations: A Look at the Updated 2016 ACC Consensus Committee Recommendations. Curr Atheroscler Rep. 2017;19(6):29. DOI:10.1007/s11883-017-0666-x.
84. Lloyd-Jones DM, Morris PB, Ballantyne CM. 2017 Focused Update of the 2016 ACC Expert Consensus Decision Pathway on the Role of Non-Statin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J Am Coll Cardiol. 2017;70(14):1785-1822.
85. Lu Y, Cheng Z, Zhao Y, et al. Efficacy and safety of long-term treatment with statins for coronary heart disease: A Bayesian network meta-analysis. Atherosclerosis. 2016;254:215-227.
86. Rygiel K. Hypertriglyceridemia - Common Causes, Prevention and Treatment Strategies. Curr Cardiol Rev. 2018;14(1):67-76.
87. Kassner U, Dippel M, Steinhagen-Thiessen E. Severe hypertriglyceridemia : Diagnostics and new treatment principles. Internist (Berl). 2017;58(8):866-876.
88. Zhao S, Wang F, Dai Y, et al. Efficacy and safety of fenofibrate as an add-on in patients with elevated triglyceride despite receiving statin treatment. Int J Cardiol. 2016;221:832-836.
89. González Santos P. The combinations of statins and fibrates: pharmacokinetic and clinical implications. Clin Investig Arterioscler. 2014;26(Suppl 1):7-11.
90. Soran H, Dent R, Durrington P. Evidence-based goals in LDL-C reduction. Clin Res Cardiol. 2017;106(4):237-248.
91. Fragasso G, Margonato A, Spoladore R, et al. Metabolic effects of cardiovascular drugs. Trends Cardiovasc Med. 2019;29(3):176-187.
92. Sakellarios AI, Fotiadis DI. The pleiotropic effect of statins on the atherosclerotic plaque and coronary heart disease. Trends Cardiovasc Med. 2019;29(8):456-457.
93. Yebyo HG, Aschmann HE, Kaufmann M, et al. Comparative effectiveness and safety of statins as a class and of specific statins for primary prevention of cardiovascular disease: A systematic review, meta-analysis, and network meta-analysis of randomized trials with 94,283 participants. Am Heart J. 2019;210:18-28.
94. Nayak A, Hayen A, Zhu L, et al. Legacy effects of statins on cardiovascular and all-cause mortality: a meta-analysis. BMJ Open. 2018;8(9):e020584. DOI: 10.1136/bmjopen-2017-020584.
95. Schade DS, Shey L, Eaton RP. Prescribing Statins to Reduce Cardiovascular Disease - Ten Common Misconceptions. Am J Med. 2019;132(8):897-899.
96. Klug E, Raal FJ, Marais AD, et al. South African dyslipidaemia guideline consensus statement: 2018 update A joint statement from the South African Heart Association (SA Heart) and the Lipid and Atherosclerosis Society of Southern Africa (LASSA). S Afr Med J. 2018;108(11b):973-1000.
97. National Institute for Health and Care Excellence. Cardiovascular disease: risk assessment and reduction, including lipid modification (Clinical Guideline CG 181): NICE, London: [Internet]. Available at: https://www.nice.org.uk/guidance/CG181/chapter/1-Recommendations.
98. Thanassoulis G, Sniderman AD, Pencina MJ. A Long-term Benefit Approach vs Standard Risk-Based Approaches for Statin Eligibility in Primary Prevention. JAMA Cardiol. 2018;3(11):1090-1095. DOI: 10.1001/jamacardio.2018.3476.
99. Curfman G. Statin-Associated Myopathy-An Elusive Clinical Problem. JAMA Intern Med. 2018;178(9):1230. DOI: 10.1001/jamainternmed.2018.3128.
100. Nguyen KA, Li L, Lu D, et al. A comprehensive review and meta-analysis of risk factors for statin-induced myopathy. Eur J Clin Pharmacol. 2018;74(9):1099-1109.
101. Casula M, Mozzanica F, Scotti L, et al. Statin use and risk of new-onset diabetes: A meta-analysis of observational studies. Nutr Metab Cardiovasc Dis. 2017;27(5):396-406.
102. He Y, Li X, Gasevic D, et al. Statins and Multiple Noncardiovascular Outcomes: Umbrella Review of Meta-analyses of Observational Studies and Randomized Controlled Trials. Ann Intern Med. 2018;169(8):543-553.
103. Laufs U, Filipiak KJ, Gouni-Berthold I, et al. SAMS expert working group. Practical aspects in the management of statin-associated muscle symptoms (SAMS). Atheroscler Suppl. 2017;26:45-55.
104. Barry AR, Beach JE, Pearson GJ. Prevention and management of statin adverse effects: A practical approach for pharmacists. Can Pharm J (Ott). 2018;151(3):179-188.
105. Banach M, Mikhailidis DP. Statin Intolerance: Some Practical Hints. Cardiol Clin. 2018;36(2):225-231.
106. Taylor BA, Thompson PD. Statin-Associated Muscle Disease: Advances in Diagnosis and Management. Neurotherapeutics. 2018;15(4):1006-1017. DOI: 10.1007/s13311-018-0670-z.
107. Brown AS, Watson KE. Statin Intolerance. Rev Cardiovasc Med. 2018;19(S1):S9-S19.
108. Alonso R, Cuevas A, Cafferata A. Diagnosis and Management of Statin Intolerance. J Atheroscler Thromb. 2019;26(3):207-215.
109. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterollowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267-78.
110. Chou R, Dana T, Blazina I, et al. Statins for Prevention of Cardiovascular Disease in Adults Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2016;316(19):2008-2024.
111. Seo YH, Seo DJ, Song IG, et al. Rationale of decreasing low-density lipoprotein cholesterol below 70 mg/dL in patients with coronary artery disease: A retrospective virtual histology. Intravascular ultrasound study. Cardiol J. 2018;25(6):674-682. DOI: 10.5603/CJ.a2018.0002.
112. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129;25:Suppl 2:S1-S45.
113. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387-97.
114. Bucholz EM, Rodday AM, Kolor K, et al. Prevalence and Predictors of Cholesterol Screening, Awareness, and Statin Treatment Among US Adults With Familial Hypercholesterolemia or Other Forms of Severe Dyslipidemia (1999-2014). Circulation. 2018;137(21):2218-2230. DOI: 10.1161/ CIRCULATIONAHA.117.032321.
115. Versmissen J, Oosterveer DM, Yazdanpanah M, et al. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ. 2008;337:a2423. DOI:10.1136/bmj.a2423.
116. deGoma EM, Ahmad ZS, O’Brien EC, et al . Treatment gaps in adults with heterozygous familial hypercholesterolemia in the United States: data from the CASCADE-FH registry. Circ Cardiovasc Genet. 2016;9(3):240-9.
117. Bove M, Cicero AFG, Borghi C. Emerging drugs for the treatment of hypercholesterolemia. Expert Opin Emerg Drugs. 2019;24(1):63-39. DOI: 10.1080/14728214.2019.1591372.
118. Ferrari F, Stein R, Motta MT, et al. PCSK9 Inhibitors: Clinical Relevance, Molecular Mechanisms, and Safety in Clinical Practice. Arq Bras Cardiol. 2019;112(4):453-460.
119. Duntas LH, Brenta G. The effect of thyroid disorders on lipid levels and metabolism. Med Clin North Am. 2012;96(2):269-281.
120. 121. Wici?ski M, ?ak J, Malinowski B, et al. PCSK9 signaling pathways and their potential importance in clinical practice. EPMA J. 2017;8(4):391-402.
121. Chirino AJ, Ary ML, Marshall SA. Minimizing the immunogenicity of protein therapeutics. Drug Discov Today. 2004;9(2):82-90.
122. Pendley C, Schantz A, Wagner C. Immunogenicity of therapeutic monoclonal antibodies. Curr Opin Mol Ther. 2003;5(2):172-9.
123. Seidah NG, Awan Z, Chretien M, et al. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114(6):1022-1036.
124. Ridker PM, Tardif JC, Amarenco P, et al. Lipid-Reduction Variability and Antidrug-Antibody Formation with Bococizumab. N Engl J Med. 2017;376(16):1517-1526.
125. Landmesser U, Chapman MJ, Farnier M, et al. European Society of Cardiology/European Atherosclerosis Society Task Force consensus statement on proprotein convertase subtilisin/kexin type 9 inhibitors: practical guidance for use in patients at very high cardiovascular risk.. Eur Heart J. 2017;38(29):2245-2255.
126. Steffens D, Bramlage P, Scheeff C, et al. PCSK9 inhibitors and cardiovascular outcomes. Expert Opin Biol Ther. 2020;20(1):35-47.
127. Wilson PWF, Polonsky TS, Miedema MD, et al. Systematic Review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139: e1144–e1161.
128. McKenney JM, Koren MJ, Kereiakes DJ, et al. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59(25):2344-53.
129. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376(18):1713-1722.
130. Nicholls SJ, Puri R, Anderson T, et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA. 2016;316(22):2373-2384.
131. Giugliano RP, Mach F, Zavitz K, et al. Cognitive function in a randomized trial of evolocumab. N Engl J Med. 2017;377:633-643.
132. Blom DJ, Hala T, Bolognese M, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370(19):1809-19.
133. Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500-1509.
134. Raal F, Honarpour N, Blom DJ, et al. Trial evaluating evolocumab, a PCSK9 antibody, in patients with homozygous FH (TESLA): results of the randomized, double-blind, placebo-controlled trial. Atherosclerosis. 2014;235(2):e12.
135. Bruckert E, Blaha V, Stein EA, , et al. Trial assessing long-term use of PCSK9 inhibition in patients with genetic LDL disorders (TAUSSIG): Efficacy and safety in patients with homozygous familial hypercholesterolemia receiving lipid apheresis. Circulation. 2014;130(suppl 2):A17016.
136. Robinson JG, Nedergaard BS, Rogers WJ, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311(18):1870-1882.
137. Giugliano RP, Desai NR, Kohli P, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380(9858):2007-17.
138. Sullivan D, Olsson AG, Scott R, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 2012;308(23):2497-506.
139. Stroes E, Colquhoun D, Sullivan D, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2541-2548.
140. Nissen SE, Dent-Acosta RE, Rosenson RS, et al. Comparison of PCSK9 Inhibitor Evolocumab vs Ezetimibe in Statin-Intolerant Patients: Design of the Goal Achievement After Utilizing an Anti-PCSK9 Antibody in StatinIntolerant Subjects 3 (GAUSS-3) Trial. Clin Cardiol. 2016;39:137-44.
141. Koren MJ, Lundqvist P, Bolognese M, et al-. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2531-2540.
142. Koren MJ, Scott R, Kim JB, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertasa subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012;380(9858):1995-2006.
143. Raal FJ, Stein EA, Dufour R, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):331-40.
144. Kiyosue A, Honarpour N, Kurtz C, et al. A phase 3 study of evolocumab (AMG 145) in statin-treated japanese patients at high cardiovascular risk. Am J Cardiol. 2016;117(1):40-7.
145. 146.US Food & drug administration. Drugs @FDA: FDA- Approved Drugs. [Internet]. Available at: www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=12552.
146. 147. Dent R, Joshi R, Djedjos C, et al. Evolocumab lowers LDL-C safely and effectively when self-administered in the at-home setting. SpringerPlus. 2016;5:300.
147. 148. European Medicines Agency. Praluent (alirocumab): EU summary of product characteristics. 2016.. [Internet]. (Accessed 20 September 2016). Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_Product-Information/WC500194521.pdf.
148. Schwartz GG, Bessac L, Berdan LG, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168(5):682-9.
149. Bittner V. American College of Cardiology. Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab - ODYSSEY OUTCOMES. [Internet]. Available at: http://www.acc.org/latest-in-cardiology/clinical-trials/2018/03/09/08/02/odyssey-outcomes.
150. ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab. [Internet]. (Accessed September 13 2016). Available at: https://clinicaltrials.gov/ct2/show/NCT01663402.
151. 152. Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489-1499.
152. Kastelein JJ, Ginsberg HN, Langslet G, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36(43):2996- 3003.
153. Ginsberg HN, Rader DJ, Raal FJ, et al. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia and LDL-C of 160 mg/dl or higher. Cardiovasc Drugs Ther. 2016;30(5):473-483.
154. Kereiakes DJ, Robinson JG, Cannon CP, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: the ODYSSEY COMBO I study. Am Heart J. 2015;169(6):906-915.
155. Food and Drug Administration (FDA). La FDA aprueba Praluent para tratar ciertos pacientes con colesterol alto. [acceso 30 de enero de 2020]. Disponible en: https://wayback.archive-it.org/7993/20170722081853/ https://www.fda.gov/News-Events/News-room/Comunicados-de-Prensa/ucm455917.htm
156. Farnier M, Gaudet D, Valcheva V, et al. Efficacy of alirocumab in high cardiovascular risk populations with or without heterozygous familial hypercholesterolemia: pooled analysis of eight ODYSSEY Phase 3 clinical program trials. Int J Cardiol. 2016;223:750-757.
157. Kastelein JJ, Kereiakes DJ, Cannon CP, et al. Effect of alirocumab dose increase on LDL lowering and lipid goal attainment in patients with dyslipidemia. Coron Artery Dis. 2017;28(3):190-197.
158. Jones PH, Bays HE, Chaudhari U, et al. Safety of alirocumab (a PCSK9 monoclonal antibody) from 14 randomized trials. Am J Cardiol. 2016;118(12):1805-1811.
159. Ray KK, Ginsberg HN, Davidson MH, et al. Reductions in atherogenic lipids and major cardiovascular events: a pooled analysis of 10 ODYSSEY trials comparing alirocumab with control. Circulation. 2016;134(24):1931-1943.
160. Zhang XL, Zhu QQ, Zhu L, et al. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Medicine. 2015;13(1):123.
161. Guedeney P, Giustino G, Sorrentino S, et al. Efficacy and safety of alirocumab and evolocumab: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J. 2019. pii: ehz430. DOI: 10.1093/ eurheartj/ehz430.
162. Perry CM. Lomitapide: A Review of its Use in Adults with Homozygous Familial Hypercholesterolemia. Am J Cardiovasc Drugs. 2013;13(4):285-296.
163. Cuchel M, Meagher EA, du Toit Theron H, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860):40-6.
164. Leipold R, Raal F, Ishak J, et al. The effect of lomitapide on cardiovascular outcome measures in homozygous familial hypercholesterolemia: A modelling analysis. Eur J Prev Cardiol. 2017;24(17):1843-1850.
165. Blom DJ, Fayad ZA, Kastelein JJ, et al. LOWER, a registry of lomitapidetreated patients with homozygous familial hypercholesterolemia: Rationale and design. J Clinical Lipidol. 2016;10(2):273-82.
166. Stefanutti C, Morozzi C, Di Giacomo S, et al. Management of homozygous familial hypercholesterolemia in real-world clinical practice: A report of 7 Italian patients treated in Rome with lomitapide and lipoprotein apheresis. J Clin Lipidol. 2016;10(4): 782-789.
167. Visser ME, Kastelein JJ, Stroes ES. Apolipoprotein B synthesis inhibition: results from clinical trials. Curr Opin Lipidol. 2010;21(4):319-323
168. Toth PP. Antisense therapy and emerging applications for the management of dyslipidemia. J Clin Lipidol. 2011;5(6):441-449.
169. Waldmann E, Vogt A, Crispin A, et al. Effect of mipomersen on LDL-cholesterol in patients with severe LDL-hypercholesterolaemia and atherosclerosis treated by lipoprotein apheresis (The MICA-Study). Atherosclerosis. 2017;259:20-25.
170. Duell PB, Santos RD, Kirwan BA, et al. Long-term mipomersen treatment is associated with a reduction in cardiovascular events in patients with familial hypercholesterolemia. J Clin Lipidol. 2016;10(4):1011-1021.
171. Panta R, Dahal K, Kunwar S. Efficacy and safety of mipomersen in treatment of dyslipidemia: A meta-analysis of randomized controlled trials. J Clin Lipidol. 2015;9(2):217-225.
172. Karalis DG, Hill AN, Clifton S, Wild RA. The risks of statin use in pregnancy: A systematic review. J Clin Lipidol. 2016;10(5):1081-1090.
173. Bateman BT, Hernandez-Diaz S, Fischer MA, et al. Statins and congenital malformations: cohort study. BMJ. 2015;350:h1035.
174. Haramburu F, Daveluy A, Miremont-Salamé G. Statins in pregnancy: new safety data are reassuring, but suspension of treatment is still advisable. BMJ. 2015;350:h1484.
175. Jacobson TA, Maki KC, Orringer CE, et al. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2. J Clin Lipidol. 2015;9(6 Suppl):S1-122.e1.
176. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016;37(39):2999-3058.
177. Maggi P, Di Bagio A, Rusconi S, et al. Cardiovascular risk and dyslipidemia among persons living with HIV: a review. BMC Infect Dis. 2017;17(1):551.
178. Banach M, Dinca M, Ursoniu S, et al. A PRISMA-compliant systematic review and meta-analysis of randomized controlled trials investigating the effects of statin therapy on plasma lipid concentrations in HIV-infected patients. Pharmacol Res. 2016;111:343-356.
179. Raposeiras-Roubín S, Triant V. Ischemic Heart Disease in HIV: An In-depth Look at Cardiovascular Risk. Rev Esp Cardiol (Engl Ed). 2016;69(12):1204-1213.
180. Gili S, Grosso Marra W, D’Ascenzo F, et al. Comparative safety and efficacy of statins for primary prevention in human immunodeficiency viruspositive patients: a systematic review and meta-analysis. Eur Heart J. 2016;37(48):3600-3609.
181. Tonelli M, Wanner C; et al. Lipid management in chronic kidney disease: synopsis of the Kidney Disease: Improving Global Outcomes 2013 clinical practice guideline. Ann Intern Med. 2014;160(3):182.
182. Palmer SC, Navaneethan SD, Craig JC, et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev. 2014;(5):CD007784.
183. Palmer SC, Navaneethan SD, Craig JC, et al. HMG CoA reductase inhibitors (statins) for dialysis patients. Cochrane Database Syst Rev. 2013;(9):CD004289.
184. Palmer SC, Navaneethan SD, Craig JC, et al. HMG CoA reductase inhibitors (statins) for kidney transplant recipients. Cochrane Database Syst Rev. 2014;(1):CD005019.
185. Su X, Zhang L, Lv J, et al. Effect of Statins on Kidney Disease Outcomes: A Systematic Review and Meta-analysis. Am J Kidney Dis. 2016;67(6):881-92.
186. Qin X, Dong H, Fang K, et al. The effect of statins on renal outcomes in patients with diabetic kidney disease: a systematic review and metaanalysis. Diabetes Metab Res Rev. 2017;33(6). DOI: 10.1002/dmrr.2901.
187. Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (study of heart and renal protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181-92.
188. Zheng-Lin B, Ortiz A. Lipid Management in Chronic Kidney Disease: Systematic Review of PCSK9 Targeting. Drugs. 2018;78(2):215-229.
Palabras Clave
Cardiovascular
cLDL
estatinas
fibratos
riesgo
dieta
ezetimibe
PCSK9
Para citar
Vargas-Uricoechea, H., Ruiz, A. J., Gómez, E. A., Román-González, A., Castillo, J., Merchán, A., & Toro, J. M. (2020). Recomendaciones del panel de expertos sobre la fisiopatología diagnóstico y tratamiento de las dislipidemias en la población adulta.Asociación Colombiana de Endocrinología Diabetes y Metabolismo, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular. Revista Colombiana De Endocrinología, Diabetes &Amp; Metabolismo, 7(1S), 4–36. https://doi.org/10.53853/encr.7.1S.573